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With increasing evidence for the existence of complexes of
intact alkanes with transition metals (“σ complexes”) as inter-
mediates in many oxidative-addition/reductive-elimination reac-
tions of alkanes (equation 1), there is considerable interest in
learning about their structure, bonding, energetics, and dynamical
properties.1-5 Previously, we reported3d indirect evidence for the
methane complex [Cn*Rh(CH4)(PMe3)]+.6 We now present
indirect evidence thatσ complexes of higher alkanes with rhodium
in the triamine environment also form as transient intermediates,
and that the metal moves along the chain with a barrier that is
slightly below the barrier to alkane dissociation.

Alkyl hydride complexes [CnRh(H)(R)(L)]X{Cn ) 1,4,7-
triazacyclononane;6 R ) Me, Et, Bu, hexyl, and decyl; L)
P(OMe)3; X- ) -OTf (triflate, CF3SO3

-) or -BAr4 (-B[3,5-

(CF3)2C6H3)]4)} have been prepared in 21-32% overall yields
from RhCl3(H2O)n by methods completely analogous to those
reported for [CnRh(H)(R)(PMe3)]X (R ) Me, Et)7 and fully
characterized. In benzene from 40 to 80°C, the [CnRh(H)(R)-
(L)](BAr 4) all react with clean first-order kinetics and quantitative
formation of [CnRh(H)(C6H5)(L)](BAr 4), which has also been
characterized. Arrhenius plots of the benzene reaction give∆Hq

ranging from 29.7 to 33.1 kcal/mol and∆Sq from 9.6 to 18.4 eu.
Reaction rates of the Et, Bu, hexyl, and decyl derivatives are very
similar, while the methyl compound is about 10-fold slower. The
size of ∆Sq is consistent with a dissociative mechanism for
replacement of alkane by benzene, and there is no dependence
of the rate of loss of hexane from [CnRh(H)(hexyl)(L)](BAr4)
on benzene concentration in C6F6 solution.8

Deuteration is effected by reduction of [CnRh(R)(L)(OTf)]-
(BAr4) with NaBD4 in THF at temperatures between-10 and
10 °C.9 A Rh-D resonance appears atδ -16.3 to-16.5 ppm in
the2H NMR spectrum. The initial deuterium content in the alkyl
group is variable but generally less than 5%, and is distributed in
theR-methylene and slightly into the internal methylene sites (we
cannot tell which internal methylenes since they are not resolved)
and a small amount on theω-carbon.10 The mechanism of the
minor incorporation of label into the alkyl group during synthesis
is not certain, but after formation of the alkyl deuteride is
complete,the amount in the internal methylenes does not increase
with time at any temperature even during alkane loss. In contrast,
the label content of theR-methylene does increase with time and
temperature, as anticipated from the results with [Cn*Rh(D)(CH3)-
(PMe3)]+.3d The rate of migration of deuterium to theR carbon
at 4°C [Rh(H)(CHDC5H11)] (k ) 4.3× 10-4 s-1)11 is comparable
to the rate of [Rh(D)(C6H13)]+ formation (kR[BD4

-] ) 5.5× 10-5

s-1), with the equilibrium constantK ) [Rh(H)(CHDC5H11)]/
[Rh(D)(C6H13)] close to 1.7, statistically corrected.

Most importantly in the present context,the deuterium label
is also found to migrate into theω-methyl group, although more
slowly than into theR-methylene (Figure 1). The first-order rate
constant for equilibration of deuterium from theR-methylene into
theω-methyl of the rhodium alkyl in C6H6 at 39.6°C is 5.6 ((0.2)
× 10-6 s-1 for the butyl derivative and 3.5 ((0.2)× 10-6 s-1 for
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the hexyl.11,12 These rate constants can be compared with those
in the same reactions for formation of [CnRh(H)(C6H5)(L)]+: 1.8
× 10-6 s-1 from butyl and 1.5× 10-6 s-1 from hexyl all in C6H6

at 39.6°C. TheR f ω migration is particularly striking for the
decyl complex with 8 intervening methylenes. Work is in progress
to determine rates of appearance of deuterium on theω carbon
and rates of [CnRh(H)(C6H5)(L)]+ formation as a function of alkyl
group chain length.

Heating [CnRh(H)(Bu)(L)](BAr4) at 50 °C in C6F6 under 13
atm of methane shows a buildup of [CnRh(H)(CH3)(L)]+,13 but
heating [CnRh(H)(hexyl)(L)]+ at 50 °C in 6 vol % of C6D6 in
C6F6 under 11 atm of13CH4 shows no detectable [CnRh(H)-
(13CH3)(L)]+ in the13C NMR spectrum checked after 2 half-lives
of clean [CnRh(D)(C6D5)(L)]+ formation. Thus, activation of
methane does occur in the absence of benzene, but methane clearly
does not compete with benzene in trapping the intermediate.

As shown in Scheme 1, reversible reductive elimination to a
coordinated alkane complex readily explains the scrambling
results. Within this complex, the metal would migrate along the
alkane chain from end-to-end presumably equilibrating among
all of the isomeric species with the metal coordinated to each of
the methylene/methyl groups in turn. Oxidative addition to form
the entire range ofsec-alkyl hydrides probably occurs, but these
would be relatively unstable and so should not be detectable.14

It is unlikely that theR f ω (end-to-end) deuterium migration
involves attack of{CnRh[P(OMe)3]}+ on a liberated alkane in
view of the competition experiment mentioned above between

methane and C6D6. The same observation rules out anR-ω
rearrangement by attack of{CnRh[P(OMe)3]}+ on the methyl
end of an intact [CnRh(H)(alkyl-R-d1)(L)]+ followed by reduc-
tive elimination from the deuterated end.15 Another group of
mechanisms that must be considered involves intervention of
a nitrogen-dissociated intermediate.16 Coordinative unsaturation
in [(κ2-Cn)Rh(H)(R)(L)]+ would makeR- and â-elimination/
hydride-readdition mechanisms possible, theR accounting for
metal-to-R-carbon equilibration, and theâ for end-to-end isomer-
ization. However, aâ-elimination path would necessarily scramble
deuterium label from the metal onto theâ carbon, which is quite
inconsistent with the observed clean migration of the Rh-D onto
only theR andω carbons in [CnRh(H)(R)(L)]+-d1 as shown in
Figure 1. A mechanism involving a cyclic intermediate from
oxidative addition of theω carbon to yield the RhV intermediate
{(κ 2-Cn)-Rh(H)2[η2-CH2(CH2)n-CH2](L)}+ requires this process
to be much faster thanâ elimination scrambling of deuterium
onto theâ carbon, and yet much slower thanR elimination, all
of which seems very unlikely. A more likely nitrogen dissociation
permutation would be reductive elimination to an intermediate
which would then undergo nitrogen dissociation to square-planar
[(κ2-Cn)Rh(alkane)(L)]+, but this mechanism is still consistent
with the inference of aσ-complexed alkane intermediate. With
the extant data, we cannot evaluate whether the rearranging
rhodium-alkane complex isκ2-Cn or κ3-Cn.17
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the 2H NMR analysis.

(13) NMR spectra of [CnRh(H)(R)(L)]+ for R ) methyl and butyl are
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rhodium) is present at 2 half-lives of butyl hydride disappearance.
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Figure 1. 2H NMR spectra of the butyl region of{CnRh(butyl)(H)-
[P(OMe)3]}+-d1 in CH3OH after the indicated times at 39.6°C. The2H
C2-C5 resonances atδ 1.2-1.3 are present after synthesis and do not
increase in intensity. Complete Rh(D)(butyl)/Rh(H)(CHDC3H7) equilibra-
tion and someR f ω scrambling occur during NaBD4 reduction of
[CnRh(butyl)(L)(OTf)](BAr4) at 10°C.

Scheme 1
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